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PRESSURE COEFFICIENTS ON ARBITRARY BODIES OF 

REVOLUTION BY USE OF NEWTONIAN CONCEPTS 

By Robert W. Rainey 

SUMMARY 

A simplified metho' , with working charts, As presented so that the 
loading, or pressure, distributions and aerodynamic characteristics of 
arbitrary bodies of revolution may be readily obtained by use of 
Newtonian concepts. The equations are in such a form as to facilitate 
an investigation of effects of Mach number variation and changes in 
specific-heat ratio upon the aerodynamic characteristics. 

INTRODUCTION 

The use of Newtonian and modified Newtonian theories has proven to 
be of value in the computation of the pressure, or load, distributions 
and aerodynamic characteristics of bodies of revolution at supersonic 
and hypersonic speeds, particularly for cases associated with the detach- 
ment of shock waves (for instances, refs. 1 to 3 ) .  
and expedite such computations for arbitrary bodies of revolution, a 
method of application of Newtonian concepts (similar to that of ref. 4) 
with working charts is presented. 
namic characteristics of an arbitrary body of revolution may be obtained 
without the computation or radial integration of the pressure distribu- 
tions. If the pressure, or load, distribution is desired, however, the 
necessary curves are included for their attainment. 

In order to simplify 

By use of these curves, the aerody- 

SYMBOLS 

A 

C A 

reference area, f i ~ ~  - 
r A  
Q 

axial-force coefficient, - 
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Cm 
1 pitching-moment coe f f i c i en t ,  - 

q&Z 

FN 

%A 
normal-force coe f f i c i en t ,  - CN 

cP 
(P  - Pm) pressure coef f ic ien t ,  
9, 

FA a x i a l  force of body 

F dFA a x i a l  for'ce per u n i t  length of element, - 
dx AX 

normal force  of body FN 

j ' N  normal force  per u n i t  length of element, - 
FNX dx 

K - (and i s  usua l ly  equal t o  the  stagnation-pressure cP 
2 cos q 

coe f f i c i en t  ) 

2 body length 

2, d is tance from moment reference t o  t ransverse element, pos i t i ve  
when element i s  forward of moment reference 

M, free-stream Mach n.umber 

MY pitching moment of body due t o  normal force  only 

p i tch ing  moment per  u n i t  length of element, - dX 
aMy 

MYX 

- 
n u n i t  vector  normal t o  surface,  pos i t i ve  inward 

nX pro jec t ion  of u n i t  vector  on the  X-axis 

pro jec t ion  of u n i t  vector  on the  Y-axis nY 

L 
3 
1 
6 
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projection of unit vector on the Z-axis "2 

P local static pressure 

free-stream static pressure prn 

940 free-stream dynamic pressure, .$ pmG2 

R reference radius 

r radius of an element in the transverse plane 

u, free-stream velocity 

U projection of U, on X-axis 

V projection of U, on Y-axis 

W projection of Urn on Z-axis 

X,Y ,<z body axes 

U angle of attack (located in X-Z plane, fig. l), sin'' W 

urn cos p 

angle of sideslip, sin -1 - v 
UOJ 

P 

7 ratio of specific heats 

angle between free stream and unit vector normal to surface 
element (see fig. 1) 

e surface slope 

roll angle of surface element, referenced to Z-axis, positive 
counterclockwise looking upstream 

QI 

$1 limiting value of r o l l  angle at which the surface element 
becomes parallel to the free-stream direction 

PRESENTATION OF METHOD 
9 

In order to compute the aerodynamic characteristics of an arbitrary 
4 body without calculating or integrating the pressure distributions, the 
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equations for the radial pressure distribution of a transverse element 
are first stated in closed form and substituted (with the appropriate 
direction-cosine relation) in the general equations for the elemental 
normal and axial forces, Fnx and  FA^, respectively. Integration of 
the longitudinal distribution of the elemental normal and axial forces 
completes the calculation. 

Equations Used 
L 
5 
1 
6 

Newtonian concepts specify that when the moving stream strikes the 
body surface the change in the normal component of momentum of the flow 
is converted into an increment in pressure. From Newtonian concepts, 
the pressure coefficient of a surface element is 

2 C = K COS 7 P 

. 
where K is dependent upon the type of the body under consideration and 
the flui.! characteristics. (Tiiis choice of K is discussed in a subse- 
quent section of this paper.) The derivations of 7 and the direction 
cosines were accomplished by the substitution of an element of a tangent 
cone for the local transverse element dx (fig. 2). The direction 
cosines for the inner normal vector are 

nX cos A = = - sin 8 
n 

nz COS c = = - COS $ COS e 
n 

and the direction cosines for the velocity vector for a body at a and 
p are 

U COS D = - = - COS a COS p 
U, 

V cos E = - = sin p 
urn 

W 
COS F = - = sin a cos p 

U, 
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L 
5 
1 
6 

The quantity cos 7 is the scalar product of the inner normal vector 
and the free-stream velocity vector; therefore, 

cos 7 = sin 8 cos u cos p - cos 8 sin $ sin p 

- cos 6 cos $ sin a cos p (5) 
This relation for 7 is useful for the computation of pressure or 

load distributions for bodies of revolution at combinations of a and 
p .  Other applications are also possible. For instance, the pressure 
distribution on the hemicylindrical leading edge of a swept wing at 
angles of attack may be computed by the substitution of (for 
the hemicylinder) and E for p where E is the semiapex angle of the 
wing and is equal to tan'' (tan p/cos a). 

6 = Oo 

For the method of rapid prediction to be presented herein, only 
the arbitrary body of revolution at angles of attack is considered. 
Therefore, p = Oo and 

cos q = sin e cos a - cos 8 cos pI sin a- ( 5 4  

The value of at which the unit vector becomes perpendicular to the 
free stream is the value at which the surface element becomes parallel 
to the free-stream direction, and 
"shadowed" region. This value of $ may be found by substituting 
q = 90° 

$ 

$ thus specifies the edge of the 

into equation (5a) for which 

-1 tan 6 
tan a 

g1 = cos - 

For a given body transverse element, the surface is shadowed from the 
oncoming flow when # < (l$. 

With the assumption that Cp = 0 in the shadowed region, the 

elemental normal force of a transverse element 
is 

dx of an arbitrary body 

dN = q&p cos c dA 

= qJp cos c - dx 
cos e 

Theref ore, 
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or substituting from equation (1) and the appropriate direction cosine 
the following expressions result: 

2 
dgl 

* cos 7 cos c 

Substitution of the relations for cos A, cos C, and cos 7 from 
equations (2), (4), and (5a) and integration (for the case where 
$ > $1) yield: 

d# = -2 cos 0 sin2a 1 sin $(cos2$ + 2) 1' J ( 2  G $1 

cos 7 cos c 
Jgl cos e 

I[ - 2 sin 2 e cos', k i n  #Ipi, 

L 
5 
1 
6 
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' O s %  ' O s  A d$ = 2 cos 8 s i n  0 s i n  s i n  $ cos $ + 

- 4 s i n  2 e s i n  a cos a[sin 

161" s i n  3 8 cos a 
+ 2  

$1 cos e 

2 f i 2  cos 'I cos c 2, de( = -2 cos 8 s i n  s i n  $(cos2$ + 

+ 4 sin e cos e cos a s i n  a2 s i n  $ cos # x 2  [' 
Tr I[ 

+ 4 - 2 s i n  2 e cos 2 a~ , [s in  $1 
$1 

2 
$1 

When $1 = 0 (no shadowed reg ion) ,  

2 
cos 'I cos c d$ = 2n s i n  8 cos 8 cos a s i n  a 

2 27 
i = K s i n  e cos e[sin2a + 2 t a n  e cos a 2 ' cos 7 cos A 

2 
cos 7 cos c 2, d$ = 2 ~ 2 ,  s i n  8 cos 8 cos a s i n  a 

For an a r b i t r a r y  body of revolu t ion ,  
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d$ 1:. - - r; 

The in t eg ra l s  i n  the  brackets  ( a l s o  see eqs.  (6) and (13) t o  (18)) 
8 >= Oo and 

i n  the case of eq. (21)) and a r e  presented 
have been numerically evaluated f o r  var ious values of 
a >= Oo (and f o r  
i n  f igures  3 and 4 .  

2,/2 = 1 
It  should be noted t h a t  i n  f igu re  3 as 8 + 9oo, 

z 
5 
1 
6 

2 r "  dd --f m; t h i s  r e s u l t s  because cos 8 4 0  i n  t h e  cos T) cos A 
J$l C O S  e 

cos 2 7 cos A 

COS e 
denominator of the  expression 

where 
separately.  

8 = 90°, the  " f la t -p la te"  Newtonian 

(see eq. (11)). For cases  

contr ibut ions may be computed 

A ~ S O  included a r e  curves of cos27 p lo t t ed  aga ins t  e f o r  var ious 
values of a ( f i g .  5 )  throughout t he  range of roll angles $ from 0' I 
t o  180'. 
i n  equation (1) f o r  the  rapid ca lcu la t ion  of pressure,  or load, d i s t r ibu -  
t i o n s .  The boundary of the  shadowed region, which determines the  minimum 

These were obtained by use of equation (?a) f o r  appl ica t ion  



9 

I 

value of 
ure 6, which presents (from eq. (6)) plotted against e for various 
values of a. 

$ for which figure 5 may be utilized, may be obtained from fig- 

An additional item of interest to those concerned with the charac- 
teristics of bodies of revolution in the low angle-of-attack range, where 
no shadowed region exists, is the fact that the values of C and Cm, 
are essentially constant up to a = 4'. This may be seen by substituting 
equations (16) and (18) into equations (19) and (21), respectively, and 
differentiating, which yields 

NU 

1 
sin e cos e cos 2a 2 R '(7) = 2K r0 cNU 

and 

1 
Cma = 2K k sin 8 cos 8 cos 2a - 2x - d(t) 

2 R  

For an arbitrary body whose characteristics are computed by this method, 
CN, and Cma would differ by only lpercent at a = 4.050 and by 6 per- 
cent at a, = 9 . 8 O  from the values of C N ~  or C% at a = 0 0 . 

This result may also be illustrated for a specific case; for 
x/2 = r/R instance, for the cone where 

and, with the moment reference at the cone apex, 

and Cma apply as cited for the cNa and the same relative values of 

general case. 

P Selection of K 

The value of K according to Newtonian theory is 2 (when M, = 03, 

and 7 = 1); however, this value does not account for either Mach 
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number variation or differences in 7 .  For blunt bodies it has been 
suggested that the value of the stagnation-point pressure coefficient 
be used for K (refs. 5 and 6); that is, 

For pointed bodies with attached shocks, a slightly higher value of 

L appears in order, and the Newtonian value of 2 is suggested. As an 

5 
example, for cones with 0 >= l5', the Newtonian theory (K = 2) will 

1 
predict 
at Mach numbers greater than 3. The effects of 7 variation may be 6 
accounted for by use of the hypersonic tangent-cone approximation 
(refs. 6 and 8). 

K 

within 4 percent of the exact values given in reference 7 

+. 
Typical Application of Method 

A typical example is presented to illustrate the method of 
appli cation : 

Find the coefficients CN, CA, and Cm at angles of attack up to 
6' of a second-power body of revolution of fineness ratio 1 with the 
center of gravity at 50 percent of the body length at a Mach number 
of 3.55 in air. For this center-of-gravity location, ZX/2 = 0.50 - x/2. 

For a fineness ratio of 1, the equation of the body is 

dr - 1 and the surface slope, - - -. For this blunt-nosed body, K = 1.78. 
4@ 

The steps in the computation are: 

(a) Compute the values of r/R and 8 at various longitudinal 
stations X/Z (see fig. 7(a)). 

2 
agl 

' cos '1 cos A (b) Read the appropriate values of 2 

cos27 cos c 
d$ from figures 3 and 4, respectively, 

COS e and 2 4; 

3 

for various values of 8 (obtained from fig. 7(a)). 
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L 
5 
1 
6 

(c) For the axial- and normal-force coefficient computations, 
and plot those multiply the above values of the integrals by 

products against x/2. For the Cm computation, the product of 
r/R 

2 cos '1 cos c dg, r/R, and (0.50 - x / 2 )  must be plotted against 

x / 2 .  (See figs. 7(b), 7(c), and 7(d).) 

(d) Integrate the areas prescribed by the above curves and 
multiply by 5 2 to obtain the aerodynamic coefficients. n R  

(e) Perform steps (a) to (a) for the other angles of attack. 
The aerodynamic characteristics computed by the method described are 

presented in figure 8. 

CONCLUDING REMARKS 
4 

A simplified method, with working charts, is presented so that the 
loading, or pressure, distributions and aerodynamic characteristics of 
arbitrary bodies of revolution may be readily obtained by use of 
Newtonian concepts. The equations are in such a form as to facilitate 
the investigation of effects of Mach number variation and changes in 
specific-heat ratio upon the aerodynamic characteristics. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., September 1, 199. 
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Figure 3 . -  Parameter f o r  axial-force computation. 



( b )  40' 5 8 5 yo; Oo 6 a 5 9'. 
Figure 3 . -  Continued. 
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(c) 400 5 e I52O; oo 5 a 5 300. 
Figure 3 .  - Continued . 
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Figure 3.- Concluded. 



(a) Oo 4 e 5 go; Oo 6 a 5 400. 

Figure 4.- Parameter of normal-force and pitching-moment computation. 
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Figure 4.- Concluded. 
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cos' 

( a )  u = Oo, 2O,  and 4'. 

Figure 5.- Parameter for pressure-coefficient computations. 
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0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0  
8, deg 

(b) a = 6' and 8'. 

Figure 5.- Continued. 
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cos%-/ 

( c )  a = 10' and 12O. 

Figure 5 .- Continued. 
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I 

COS'? 

(d) a = 15O and 20°. 

Figure 5.- Continued. 
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cos2 

( e )  a = 2 5 O  and 30°. 

Figure 5. - Continued. 
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(f) a = 40° and 500. 

Figure 5.- Continued. 
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( g )  a = 60' and 67'. 

Figure 5 .  - Continued. 
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(h) a = TO0 and 75'. 

Figure 5 .  - Continued. 
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(i) a = 78' and 80°. 

Figure 5 .  - Continued. 



(j) a = 82' and 84'. 

Figure 5.- Continued. 
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(k) a = 86' and 88'. 

Figure 5.- Continued. 



( 2 )  a = 90 0 * 

Figure 5.- Concluded. 
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Figure 6.- Radia l  boundary, $1, of shadowed region of body of 
revolution. 
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0 0  

(a) Body ordinates, y/2, and surface slopes, 8. 

t; 
W 

+ 

(b) Curve for axial-force-coeff icient computation. 

Figure 7.- Body of revolution and curves utilized in typical example at 
u = 60.  
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(c) Curve for pitching-moment-coeff icient computation. 

3 

(d) Curve for normal-force-coefficient computation. 

Figure 7. - Concluded. 
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Figure 8.- Computed aerodynamic characteristics of fineness ratio 1, 
second-power body in air. M = 3.55. 
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